

driven through innovation

MOCVD Vertical Flow Reactor **TNL-Showerhead Simulator**

SUBSTRATES AVAILABILITY

- Available in up to >30 cm diameter
- Quite inexpensive and high quality
- Can be obtained n-type, p-type, or with high resistivity
- · Used for Si and SiGe technologies
- Intense reserach to develop Sibased "pseudo-substrates" for GaAs. InP, CdTe...technologies

GaAs

- Available in up to >12 cm diameter
- High quality, more expensive than Si, but affordable
- Used for GaAs and AlGaAs, and strained InGaAs technologies
- Can be used for electronic and optoelectronic applications

InP

- 10 cm diameter available, but expensive
- InP and InGaAsP technologies can be grown
- Very important for optoelectronics and high performance electronics

SiC

- Small, very expensive substrates
- Very important for high power, large gap technologies
- Used for nitride technology

- *crystals*

1. Bulk Crystal Growth

State of the art device technologies depends on: Purity & Perfection of the

Limited to *Si, GaAs* and upto some extent for InP

*E.T. Yu, J.O. McCaldin, T.C. McGill, Band offsets in semiconductor heterojunctions, in: E. Henry, T. David (Eds.), Solid State Physics, Academic Press, 1992, pp. 1–146

Development of psuedo- GaAs

AVAILABLE TECHNIQUES

CHALLENGES

E.g. GaN growth over various substrates:

Substrate	Si	Al ₂ O ₃	SiC	Bulk GaN	AIN
Lattice Mismatch (%)	17	16	3.4	-	2.5
Thermal Conductivity (W/mm-k)	150	35	490	260	319
Resistivity (ohm-cm)	104	1014	~10 ¹²	-	>1014

- > Group IV, III-V, II-VI epi-growth with multi components
- > Point defects, e.g. vacancies, interstitial atoms
- > Extended defects within the film, generally dislocations and stacking faults
- > Dislocations: reduce or relax strain through lattice mismatch or thermal expansion differences.

Defects

Chungnam Natl Univ., S. K. Hong

INPUTS: MOCVD PROCESS

Chamber Condition		
Showerhead Based	ShowerHead Parameters	
Showernead based	Shower hole's diameter 1.0	
Injector Based	Chamber Volume (ltrs.) 1.4	
Viscosity (poise)	Chamber Pressure 10	torr
100	Ceiling Height (cm) 2.0	
Mass Dirusivity (cm2/s)	Chamber Temperature (C)	
Chamber Radius (cm)	15 Slicking Coeff. 1	

Many More parameters details Require

Precurssor Condition		
Number of Port	0	
Precursor 1	Select Prec V	
Flow Rate	atm cc/	s 🔻
Load Reaction	Step 1	Load 1
ecurssor Condition		
imber of Port		
w Rate	Select Precursc	cc/s 🔻
Load Reaction	(CH3)3CAsH2 H2	Load
	NH3	
	СНЗ	

METHODOLOGY: MOCVD PROCESS

Schwoebel barrier: The atom diffuses from the site exactly above the edge atom to the site immediately next to the edge atom as;

Incorporation barrier: incorporates into the edge on the same surface level.

The atom

CHEMICAL KINETICS SOLUTION

- TNL Chemical Kinetics database includes gasand surface phase chemical reactions
- Users may chose any desired equation or set of equations for the precursors they input based on requirements
- Users have flexibilities to write their own chemical

reactions

H2,S	SiH4			Load	Out	put_\	Window
No.	Name	A	n	E(Cal)	1	No.	Gas_Reaction
1	G 1 SiH4> SiH2 + H2	9.49	1.7	54710		1	G 1 SiH4> SiH2 +
	G 2 SiH4 + SiH2> Si2H6	10.26		50200		2	G 2 SiH4 + SiH2>
	G 3 Si2H6 + SiH2> HSiSiH3 +	14.24		8900		3	G 3 Si2H6 + SiH2
	G 4 Si2H6> H2 + HSiSiH3	9.96		54200		4	G 4 Si2H6> H2 + I
5	G 5 HSiSiH3> H2SiSiH2	13.40	0.2	5380		5	G 5 HSiSiH3> H2
6	G 6 HSiSiH3+H2> SiH2 + SiH4	13.97	0	4092			
					Add_Gas		
No.	Name	A	n	E(Cal)		No.	Surface_Reaction
No.	Name S 2 SiH2 + sigma> Si+H2	A 11.76	n 0.5	E(Cal)		No. 2	Surface_Reaction S 2 SIH2 + sigma
No. 2 3	Name S 2 SiH2 + sigma> Si+H2 S 3 H2 + 2sigma> 2H*	A 11.76 11.36	n 0.5 0.5	E(Cal) 0 17250		No. 2 3	Surface_Reaction S 2 SiH2 + sigma S 3 H2 + 2sigma>
<mark>No.</mark> 2 3	Name S 2 SiH2 + sigma> Si+H2 S 3 H2 + 2sigma> 2H*	A 11.76 11.36	n 0.5 0.5	E(Cal) 0 17250	Add_Surface	No. 2 3	Surface_Reaction S 2 SiH2 + sigma S 3 H2 + 2sigma>
No. 2 3	Name S 2 SiH2 + sigma> Si+H2 S 3 H2 + 2sigma> 2H*	A 11.76 11.36	n 0.5 0.5	E(Cal) 0 17250	Add_Surface	No. 2 3	Surface_Reaction S 2 SiH2 + sigma S 3 H2 + 2sigma3

16 ISIH3 + SIH4	A 9.49 10.26 14.24	n 1.7 1.7 0.4	E(Cal) 54710 50200 8900
iH3 i2	9.96 13.40	1.8 0.2	54200 5380
	A	n	F(Cal)
H2	11.76 11.36	0.5	0 17250
Save)		Apply

Gas-phase Mechanisms Reactions

			k =	AT ⁿ e ⁻	Ea/RT					A	n	Ea
G1	TMG	=	DMG	+	CH ₃					$1.00 imes 10^{47}$	-9.18	76,996
G2	DMG	=	MMG	+	CH ₃					7.67×10^{43}	-9.8	34,017
G3	MMG	=	Ga	+	CH ₃					1.68×10^{30}	-5.07	84,030
G4	TMG	+	NH ₃	\rightarrow	TMG:NH ₃					2.28×10^{34}	-8.31	3115
G5	TMG	+	NH ₃	\rightarrow	DMG:NH ₂	+	CH ₄			1.70×10^{4}	2	19,969
G6	DMG	+	NH ₃	\rightarrow	DMG:NH ₃					4.08×10^{31}	-7.03	3234
G7	DMG	+	NH ₃	\rightarrow	MMG:NH ₂	+	CH ₄			5.30×10^{5}	1.56	20,744
G8	MMG	+	NH ₃	\rightarrow	MMG:NH ₃					7.95×10^{24}	-5.21	2094
G9	MMG	+	NH ₃	\rightarrow	GaNH ₂	+	CH ₄			8.10×10^{5}	1.3	17,722
G10	NH ₃	+	CH ₃	\rightarrow	NH ₂	+	CH ₄			3.31×10^{3}	2.51	9859
G11	CH ₃	+	H ₂	\rightarrow	CH ₄	+	Н			1.20×10^{12}	0	12,518
G12	TMG	+	H	\rightarrow	DMG	+	CH ₄			5.00×10^{13}	0	10,036
G13	DMG	+	Н	\rightarrow	MMG	+	CH ₄			5.00×10^{13}	0	10,036
G14	TMG:NH ₃	\rightarrow	MMG	+	2CH ₃	+	NH ₃			1.33×10^{44}	-8.24	77,791
G15	CH ₃	+	Н	+	М	\rightarrow	CH ₄	+	NH ₃	2.40×10^{22}	-1	0
G16	2CH ₃	=	C ₂ H ₆							2.00×10^{13}	0	0
G17	2H	+	M	=	H ₂	+	М			2.00×10^{16}	0	0

Surface phase Reactions: PATH 1

			Path 1, $k = A$	AT"e ^{-Ea/RI}				A	n	Ea
1	MMG	+	N(S)	\rightarrow	MMG(S)			$1.16 imes 10^5$	2.98	0
2	MMG(S)	\rightarrow	MMG	+	N(S)			1.12×10^{14}	0.55	107,673
3	NH ₃	+	MMG(S)	\rightarrow	COMPM1(S)			3.35×10^{7}	3.33	0
4	COMPM1(S) -	\rightarrow	NH ₃	+	MMG(S)			5.70×10^{13}	-0.16	8146
5	MMG	+	COMPM1(S)	\rightarrow	CH4	+ (OMPM2(S)	1.23×10^{10}	3.22	23,446
6	NH ₃	+	COMPM2(S)	\rightarrow	COMPM3(S)			3.35×10^{7}	3.33	0
7	COMPM3(S) -	+	NH ₃	+	COMPM2(S)			5.70×10^{13}	- <mark>0.161</mark>	8146
8	MMG	+	COMPM3(S)	\rightarrow	CH ₄	+ (OMPM4(S)	1.23×10^{10}	3.22	23,446
9	NH ₃	+	COMPM4(S)	\rightarrow	COMPM5(S)			3.35×10^{7}	3.33	0
10	COMPM5(S) -	÷	NH ₃	+	COMPM4(S)			5.70×10^{13}	-0.161	8146
11	COMPM5(S) -	\rightarrow	CH4	+	RINGM1(S)			1.23×10^{7}	3.22	23,446
12	Ga(S)	+	RINGM1(S)	\rightarrow	RINGM2(S)	+	N(S)	3.35×10^{7}	3.33	0
13	RINGM2(S)	\rightarrow	3H ₂	+	3GaN(B)	+	Ga(S)	3.68×10^{9}	2.05	59,610

Surface phase Reactions: PATH 2

			Path 2, $k = A$	T ⁿ e ^{-Ea}	√RT	A	n
14	CH ₃	+	Ga(S)	\rightarrow	MMG(S)	1.76×10^{9}	1.39
15	MMG(S)	\rightarrow	CH ₃	+	Ga(S)	4.54×10^{13}	0.0346
16	NH ₂	+	Ga(S)	\rightarrow	NH ₂ (S)	3.17×10^{8}	1.83
17	GaNH ₂	+	N(S)	\rightarrow	$GaNH_2(s)$	2.27×10^{6}	2.247
18	GaNH ₂ (S)	\rightarrow	GaNH ₂	+	N(S)	4.83×10^{13}	0.614
19	COMPMM1(S)	\rightarrow	CH ₄	+	GaNH ₂ (S)	1.49×10^{11}	0.609
20	MMG	+	GaNH ₂ (S)	\rightarrow	COMPMM1(S)	1.16×10^{5}	2.98
21	NH ₃	+	COMPMM1(S)	\rightarrow	COMPMM2(S)	3.35×10^{7}	3.33
22	COMPMM2(S)	\rightarrow	CH ₄	+	COMPMM3(S)	1.49×10^{11}	0.609
23	MMG	+	COMPMM3(S)	\rightarrow	COMPMM4(S)	1.16×10^{5}	2.98
24	NH ₃	+	COMPMM4(S)	\rightarrow	COMPMM5(S)	3.35×10^{7}	3.33
25	COMPMM5(S)	\rightarrow	CH ₄	+	RINGM1(S)	1.49×10^{11}	0.609
26	NH ₂ (S)	\rightarrow	NH ₂	+	Ga(S)	1.45×10^{14}	0.09
27	COMPMM1(S)	\rightarrow	MMG	+	$GaNH_2(S)$	1.00×10^{14}	0.55
28	COMPMM2(S)	\rightarrow	NH ₃	+	COMPMM1(S)	5.70×10^{13}	-0.1
29	COMPMM4(S)	\rightarrow	MMG	+	COMPMM3(S)	1.00×10^{14}	0.55
30	COMPMM5(S)	\rightarrow	NH ₃	+	COMPMM4(S)	5.70×10^{13}	-0.1
31	Ga	+	N(S)	\rightarrow	Ga(S)	$1.00 imes 10^{11}$	1.5
32	Ga(S)	+	$NH_2(S)$	\rightarrow	GaNH ₂ +Ga(S)	1.00×10^{25}	0
33	Ga(S)	\rightarrow	Ga	+	N(S)	1.00×10^{13}	0
34	6CH ₃	+	RINGM2(S)	\rightarrow	COM1(S)	7.55×10^{7}	2.31
35	COM1(S)	\rightarrow	6CH ₃	+	RINGM2(S)	1.00×10^{13}	0.71
36	COM1(S)	\rightarrow	6CH ₄	+	3GaN(B) + Ga(S)	$4.00 imes 10^{12}$	0

Ea	
0	
79,480	
0	
0	
83,881	
25,950	
0	
0	
25,950	
0	
0	
25,950	
59,786	
42,819	
8146	
42,819	
8146	
0	
0	
45,168	
0	
45,506	
49,675	TN

Surface phase Reactions: PATH 3

			Pa	th 3, 1	$k = AT^{n}e^{-Ea/RT}$			Α	n	Ea
37	TMG	+	N(S)	\rightarrow	TMG(S)			1.16×10^{5}	2.98	0
38	NH ₃	+	TMG(S)	\rightarrow	TCOM1(S)			3.35×10^{7}	3.33	0
39	TCOM1(S)	\rightarrow	CH ₄	+	TCOM2(S)			1.49×10^{11}	0.609	32,785
40	Ga(S)	+	TCOM2(S)	\rightarrow	TCOM3(S)	+	N(S)	3.35×10^{7}	3.33	0
1	TCOM3(S)	\rightarrow	2CH ₄	+	GaN(B)	+	Ga(S)	1.49×10^{11}	0.609	49,675
12	TMG(S)	\rightarrow	TMG	+	N(S)			1.12×10^{14}	0.55	49,675
13	TCOM1(S)	\rightarrow	NH ₃	+	TMG(S)			5.70×10^{13}	-0.161	11,922
4	TMG:NH ₃	+	N(S)	\rightarrow	TCOM1(S)			1.16×10^{5}	2.98	0
5	TCOM1(S)	\rightarrow	TMG:NH ₃	+	N(S)			1.12×10^{14}	0.55	49,675
6	TCOM1(S)	\rightarrow	2CH ₃	+	MMG(S)	+	NH3 +N(S)	1.12×10^{14}	0.55	10,7673
7	MMGNH ₃	+	N(S)	\rightarrow	COMPM1(S)			1.16×10^5	2.98	0
18	COMPM1(S)	\rightarrow	MMG:NH ₃	+	N(S)			$1.12 imes 10^{14}$	0.55	107,673
19	MMG:NH ₃	+	COMPM1(S)	\rightarrow	CH ₄	+	COMPM3(S)	1.23×10^{10}	3.22	23,446
50	MMG:NH ₃	+	COMPM3(S)	\rightarrow	CH ₄	+	COMPM5(S)	1.23×10^{10}	3.22	23,446
51	MMG:NH ₃	+	GaNH ₂ (S)	\rightarrow	COMPMM2(S)			1.16×10^{5}	2.98	0
52	MMG:NH ₃	+	COMPMM3(S)	\rightarrow	COMPMM5(S)			1.16×10^{5}	2.98	0

COMPOSITION OF INTERMEDIATES

Chemical Formula

Chemical Composition of compound on the surface

Compounds Names

COMPM1(S)	NH ₃ ·MMG(S)
COMPM2(S)	Ga·NH ₂ ·MMG(S)
COMPM3(S)	NH ₃ ·Ga·NH ₂ ·MMG(S)
COMPM4(S)	Ga·NH2·Ga·NH2·MMG(S)
COMPM5(S)	NH3·Ga·NH2·Ga·NH2·MMG(S)
RINGM1(S)	NH2 ·Ga·NH2 ·Ga·NH2 ·Ga(S)
RINGM2(S)	(S)NH2 ·Ga·NH2 ·Ga·NH2 ·Ga(S)
COMPMM1(S)	MMG·GaNH ₂ (S)
COMPMM2(S)	NH3·MMG·GaNH2·Ga(S)
COMPMM3(S)	NH2 ·Ga·NH2 ·Ga(S)
COMPMM4(S)	MMG·NH ₂ ·Ga·NH ₂ ·Ga(S)
COMPMM5(S)	NH3·MMG·NH2·Ga·NH2·Ga(S)
TCOM1(S)	NH ₃ ·TMG(S)
TCOM2(S)	NH ₂ ·DMG(S)
TCOM3(3)	(S)NH ₂ ·DMG(S)
COM1(S)	RINGM2(S)·CH3 complex

CASE STUDY: GaAs OVER GaAs *

*P. K. Saxena, P. Srivastava, R. Trigunayat, An innovative approach for controlled epitaxial growth of GaAs in real MOCVD reactor environment, Journal of Alloys and Compounds 809 (2019) 151752.

CHEMICAL KINETICS

Gas-phase reactions: (G1) TMGa + H₂ = MMGa + 2CH₄

 $(G2) TBAs = AsH + C_4H_8 + H_2$

Surface reaction: (S1) MMGa + AsH = GaAs(s) + CH₄

Reactions included in the gas-phase and surface-phase model

Kinetic	Value	Unit
Parameter		
A _{G1}	1.2×10^{15}	S ⁻¹
A _{G2}	5.32×10^{15}	S-1
A _{S1}	1.23×10^{9}	m/s
E _{G1}	196	kJ/mol
E _{G2}	203	kJ/mol
E _{S1}	130	kJ/mol
E _{S1}	130	kJ/mol

MOCVD GAAS OVER GAAS

An atom makes bond with another atom when its patches lie in a line. The interaction between two atoms depends upon the angle its patches make with each other.

* Journal of Alloys and Compounds 809 (2019) 151752.

MOCVD Growth Rate

Values	Units	16	P _{As}
1.75	eV	(14 (14) (12)	
0.02	eV	wth Rate (
0.05	eV	619 6	~
	Values 1.75 0.02 0.05	Values Units 1.75 eV 0.02 eV 0.05 eV	Values Units 16 1.75 eV 14 0.02 eV 10 0.05 eV 6 0.05 eV 4

* Journal of Alloys and Compounds 809 (2019) 151752.

TNL's tools support advanced and unique licensing models tailored for unique customer needs.

- > ADVANCED LICENSING OPTIONS:
- Term-Based
- Perpetual
- TCAD Academic Suite
- 24x7 Technical Support for Academic Institutions

