Atomistic Thin Film Growth – EpiGrow Simulator Case Studies

1. A detailed real lattice based epitaxial growth of GaAs using MOCVD reactor's input conditions

Gas-phase reactions:

(G1) TMGa + H_2 = MMGa + 2CH₄ (G2) TBAs = AsH + C₄H₈ + H₂

Surface reaction

(S1) MMGa + AsH = $GaAs(s) + CH_4$

Kinetic Parameter	Value	Unit
A _{G1}	1.2×10^{15}	S ⁻¹
A _{G2}	5.32×10^{15}	S ⁻¹
A _{S1}	1.23×10^{9}	m/s
E _{G1}	196	kJ/mol
E _{G2}	203	kJ/mol
E _{S1}	130	kJ/mol

Reactions included in the gas-phase and surface-phase model. Note: Rate constants have been adopted from Ref. [20].

Various energy values used.

Parameters	Values	Units
Substrate surface energy (E _s)	1.75	eV
Schwoebel barrier energy (Eshw)	0.02	eV
Incorporation barrier energy (Ei)	0.05	eV

ΤΝΙ

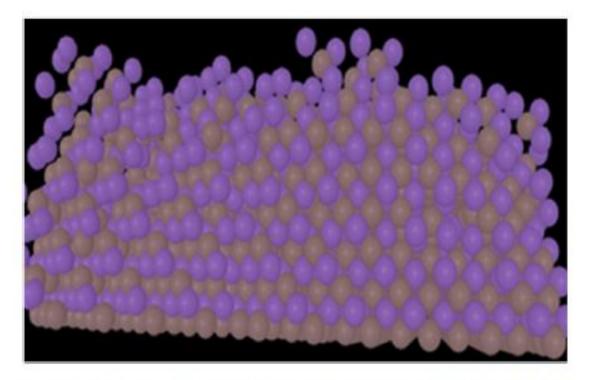


Fig. 2. The layered structure of GaAs thin film over GaAs crystal is clearly visible (Bottom first and second layer atoms are Ga and As which belong to substrate layer).

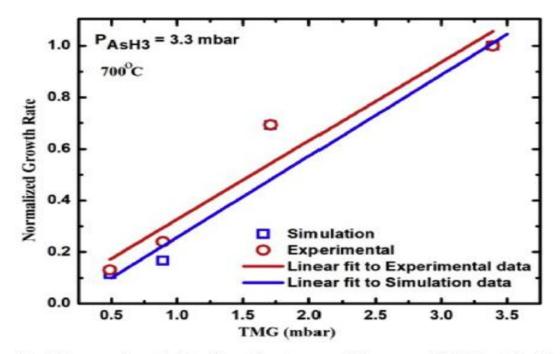


Fig. 4. The experimental data of growth rates vs partial pressure of TMG is retrieved and its normalized values are plotted here (Red circles). For comparison normalized data of simulation result is also plotted (Blue Squares). It is clear that both slopes are almost equal. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

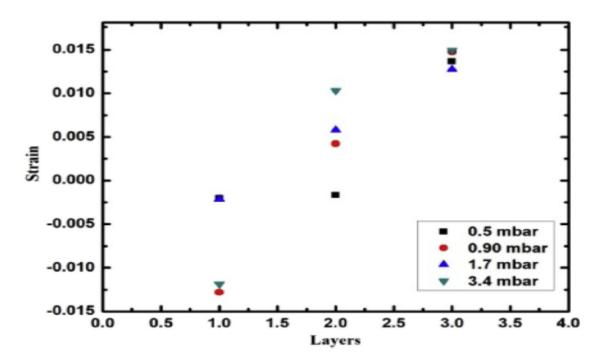


Fig. 6. Strain is extracted for every layer EpiGrow simulator and strain for first three layers is shown here. The average strain in the epi-grown sample including compressible and tensile is almost zero.

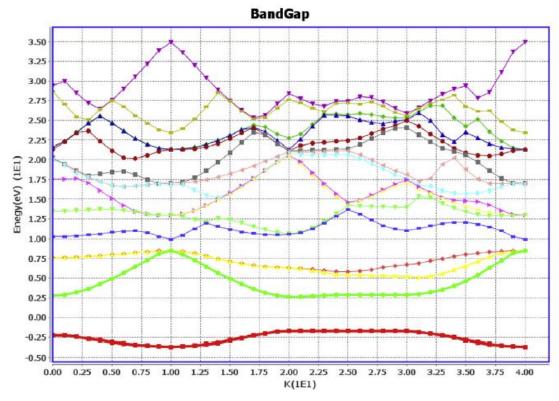


Fig. 7. Full energy band structure is shown for GaAs. Lower four lines depict Valence band while upper lines are showing Conduction band. Gamma point is at K (1E1) point value 10.0.

2. A detailed real lattice based epitaxial growth of GaN using MOCVD reactor's input conditions:

			k =	AT ⁿ e ⁻	Ea/ <i>R</i> T					Α	n	Ea
G1	TMG	=	DMG	+	CH ₃					$1.00 imes10^{47}$	-9.18	76,996
G2	DMG	=	MMG	+	CH ₃					7.67×10^{43}	-9.8	34,017
G3	MMG	=	Ga	+	CH ₃					$1.68 imes 10^{30}$	-5.07	84,030
G4	TMG	+	NH_3	\rightarrow	TMG:NH ₃					2.28×10^{34}	-8.31	3115
G5	TMG	+	NH_3	\rightarrow	DMG:NH ₂	+	CH_4			1.70×10^4	2	19,969
G6	DMG	+	NH ₃	\rightarrow	DMG:NH ₃					$4.08 imes 10^{31}$	-7.03	3234
G7	DMG	+	NH ₃	\rightarrow	MMG:NH ₂	+	CH_4			5.30×10^{5}	1.56	20,744
G8	MMG	+	NH ₃	\rightarrow	MMG:NH ₃					7.95×10^{24}	-5.21	2094
G9	MMG	+	NH ₃	\rightarrow	GaNH ₂	+	CH ₄			$8.10 imes 10^5$	1.3	17,722
G10	NH ₃	+	CH_3	\rightarrow	NH ₂	+	CH_4			3.31×10^{3}	2.51	9859
G11	CH_3	+	H ₂	\rightarrow	CH ₄	+	Н			1.20×10^{12}	0	12,518
G12	TMG	+	Н	\rightarrow	DMG	+	CH_4			5.00×10^{13}	0	10,036
G13	DMG	+	Н	\rightarrow	MMG	+	CH ₄			5.00×10^{13}	0	10,036
G14	TMG:NH ₃	\rightarrow	MMG	+	2CH ₃	+	NH ₃			1.33×10^{44}	-8.24	77,791
G15	CH ₃	+	Н	+	Μ	\rightarrow	CH ₄	+	NH_3	2.40×10^{22}	-1	0
G16	2CH ₃	=	C_2H_6						-	$2.00 imes 10^{13}$	0	0
G17	2H	+	Μ	=	H ₂	+	М			$2.00 imes 10^{16}$	0	0

Gas-phase Mechanisms:

Surface phase Mechanisms: Path 1, Path 2 and Path 3

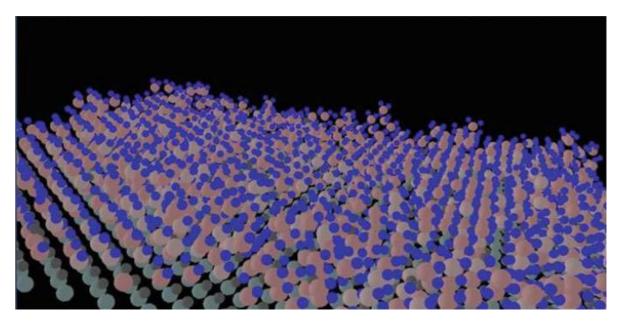
		Path 1, $k =$	AT ⁿ e ^{-Ea/RI}	Г		Α	n	Ea
1	MMG +	N(S)	\rightarrow	MMG(S)		$1.16 imes 10^5$	2.98	0
2	$MMG(S) \rightarrow$	MMG	+	N(S)		$1.12 imes 10^{14}$	0.55	107,673
3	NH ₃ +	MMG(S)	\rightarrow	COMPM1(S)		3.35×10^{7}	3.33	0
4	$COMPM1(S) \rightarrow$	NH ₃	+	MMG(S)		$5.70 imes 10^{13}$	-0.16	8146
5	MMG +	COMPM1(S)	\rightarrow	CH4	+ COMPM2(S)	1.23×10^{10}	3.22	23,446
6	NH3 +	COMPM2(S)	\rightarrow	COMPM3(S)		3.35×10^{7}	3.33	0
7	$COMPM3(S) \rightarrow$	NH ₃	+	COMPM2(S)		5.70×10^{13}	-0.161	8146
8	MMG +	COMPM3(S)	\rightarrow	CH ₄	+ COMPM4(S)	1.23×10^{10}	3.22	23,446
9	NH3 +	COMPM4(S)	\rightarrow	COMPM5(S)		3.35×10^{7}	3.33	0
10	$COMPM5(S) \rightarrow$	NH ₃	+	COMPM4(S)		5.70×10^{13}	-0.161	8146
11	$COMPM5(S) \rightarrow$	CH4	+	RINGM1(S)		1.23×10^{7}	3.22	23,446
12	Ga(S) +	RINGM1(S)	\rightarrow	RINGM2(S)	+ N(S)	3.35×10^{7}	3.33	0
13	RINGM2(S) \rightarrow	3H ₂	+	3GaN(B)	+ Ga(S)	3.68×10^{9}	2.05	59,610

			Path 2, $k = A$	T ⁿ e ^{-Ea}	√RT	A	n	Ea
14	CH ₃	+	Ga(S)	\rightarrow	MMG(S)	$1.76 imes 10^9$	1.39	0
15	MMG(S)	\rightarrow	CH ₃	+	Ga(S)	4.54×10^{13}	0.0346	79,480
16	NH ₂	+	Ga(S)	\rightarrow	$NH_2(S)$	3.17×10^{8}	1.83	0
17	GaNH ₂	+	N(S)	\rightarrow	GaNH ₂ (s)	2.27×10^{6}	2.247	0
18	GaNH ₂ (S)	\rightarrow	GaNH ₂	+	N(S)	4.83×10^{13}	0.614	83,881
19	COMPMM1(S)	\rightarrow	CH_4	+	GaNH ₂ (S)	1.49×10^{11}	0.609	25,950
20	MMG	+	GaNH ₂ (S)	\rightarrow	COMPMM1(S)	$1.16 imes 10^5$	2.98	0
21	NH ₃	+	COMPMM1(S)	\rightarrow	COMPMM2(S)	3.35×10^{7}	3.33	0
22	COMPMM2(S)	\rightarrow	CH ₄	+	COMPMM3(S)	1.49×10^{11}	0.609	25,950
23	MMG	+	COMPMM3(S)	\rightarrow	COMPMM4(S)	$1.16 imes 10^5$	2.98	0
24	NH ₃	+	COMPMM4(S)	\rightarrow	COMPMM5(S)	3.35×10^{7}	3.33	0
25	COMPMM5(S)	\rightarrow	CH ₄	+	RINGM1(S)	1.49×10^{11}	0.609	25,950
26	NH ₂ (S)	\rightarrow	NH ₂	+	Ga(S)	$1.45 imes 10^{14}$	0.09	59,786
27	COMPMM1(S)	\rightarrow	MMG	+	GaNH ₂ (S)	$1.00 imes 10^{14}$	0.55	42,819
28	COMPMM2(S)	\rightarrow	NH ₃	+	COMPMM1(S)	5.70×10^{13}	-0.1	8146
29	COMPMM4(S)	\rightarrow	MMG	+	COMPMM3(S)	$1.00 imes 10^{14}$	0.55	42,819
30	COMPMM5(S)	\rightarrow	NH ₃	+	COMPMM4(S)	5.70×10^{13}	-0.1	8146
31	Ga	+	N(S)	\rightarrow	Ga(S)	1.00×10^{11}	1.5	0
32	Ga(S)	+	$NH_2(S)$	\rightarrow	GaNH ₂ +Ga(S)	1.00×10^{25}	0	0
33	Ga(S)	\rightarrow	Ga	+	N(S)	$1.00 imes10^{13}$	0	45,168
34	6CH ₃	+	RINGM2(S)	\rightarrow	COM1(S)	7.55×10^{7}	2.31	0
35	COM1(S)	\rightarrow	6CH ₃	+	RINGM2(S)	1.00×10^{13}	0.71	45,506
36	COM1(S)	\rightarrow	6CH ₄	+	3GaN(B) +Ga(S)	4.00×10^{12}	0	49,675

			P	Path 3, k	$x = AT^{n}e^{-Ea/RT}$			Α	n	Ea
37	TMG	+	N(S)	\rightarrow	TMG(S)			$1.16 imes 10^5$	2.98	0
38	NH_3	+	TMG(S)	\rightarrow	TCOM1(S)			3.35×10^{7}	3.33	0
39	TCOM1(S)	\rightarrow	CH_4	+	TCOM2(S)			1.49×10^{11}	0.609	32,785
40	Ga(S)	+	TCOM2(S)	\rightarrow	TCOM3(S)	+	N(S)	3.35×10^{7}	3.33	0
41	TCOM3(S)	\rightarrow	$2CH_4$	+	GaN(B)	+	Ga(S)	1.49×10^{11}	0.609	49,675
42	TMG(S)	\rightarrow	TMG	+	N(S)			1.12×10^{14}	0.55	49,675
43	TCOM1(S)	\rightarrow	NH_3	+	TMG(S)			5.70×10^{13}	-0.161	11,922
44	TMG:NH ₃	+	N(S)	\rightarrow	TCOM1(S)			$1.16 imes 10^5$	2.98	0
45	TCOM1(S)	\rightarrow	TMG:NH ₃	+	N(S)			1.12×10^{14}	0.55	49,675
46	TCOM1(S)	\rightarrow	2CH ₃	+	MMG(S)	+	$NH_3 + N(S)$	1.12×10^{14}	0.55	10,7673
47	MMGNH ₃	+	N(S)	\rightarrow	COMPM1(S)			1.16×10^{5}	2.98	0
48	COMPM1(S)	\rightarrow	MMG:NH ₃	+	N(S)			1.12×10^{14}	0.55	107,673
49	MMG:NH ₃	+	COMPM1(S)	\rightarrow	CH_4	+	COMPM3(S)	1.23×10^{10}	3.22	23,446
50	MMG:NH ₃	+	COMPM3(S)	\rightarrow	CH ₄	+	COMPM5(S)	1.23×10^{10}	3.22	23,446
51	MMG:NH ₃	+	GaNH ₂ (S)	\rightarrow	COMPMM2(S)			$1.16 imes 10^5$	2.98	0
52	MMG:NH3	+	COMPMM3(S)	\rightarrow	COMPMM5(S)			$1.16 imes10^5$	2.98	0

Chemical Composition of compound on the surface

Compounds Names	Chemical Formula
COMPM1(S)	NH ₃ ·MMG(S)
COMPM2(S)	$Ga \cdot NH_2 \cdot MMG(S)$
COMPM3(S)	$NH_3 \cdot Ga \cdot NH_2 \cdot MMG(S)$
COMPM4(S)	$Ga \cdot NH_2 \cdot Ga \cdot NH_2 \cdot MMG(S)$
COMPM5(S)	NH ₃ ·Ga·NH ₂ ·Ga·NH ₂ ·MMG(S)
RINGM1(S)	$NH_2 \cdot Ga \cdot NH_2 \cdot Ga \cdot NH_2 \cdot Ga(S)$
RINGM2(S)	(S)NH ₂ ·Ga·NH ₂ ·Ga·NH ₂ ·Ga(S)
COMPMM1(S)	$MMG \cdot GaNH_2(S)$
COMPMM2(S)	NH ₃ ·MMG·GaNH ₂ ·Ga(S)
COMPMM3(S)	$NH_2 \cdot Ga \cdot NH_2 \cdot Ga(S)$
COMPMM4(S)	MMG·NH ₂ ·Ga·NH ₂ ·Ga(S)
COMPMM5(S)	$NH_3 \cdot MMG \cdot NH_2 \cdot Ga \cdot NH_2 \cdot Ga(S)$
TCOM1(S)	NH ₃ ·TMG(S)
TCOM2(S)	NH ₂ ·DMG(S)
TCOM3(3)	(S)NH ₂ ·DMG(S)
COM1(S)	RINGM2(S) CH ₃ complex


Process Parameters Used

Parameters	Values	Unit
Time	30	s
Temperature	800	°C
Surface energy	2	eV
Desorption barrier energy	4	eV
Schwoebel barrier	0.002	eV
Incorporation barrier	0.05	eV
Nearest neighbor attraction	0.05	eV

Precursors and Gas ambience Used

Materials	Partial pressure							
	Ga (mbar)	Al (mbar)	N2 (mbar)					
GaN	0.3	0.0	3.0					
Ga _{0.85} Al _{0.15} N	0.3	0.03	3.0					
Ga _{0.7} Al _{0.3} N	0.28	0.05	3.0					
Ga _{0.61} Al _{0.39} N	0.25	0.10	3.0					

Epitaxial growth of AlGaN over GaN using TNL EpiGrow simulator

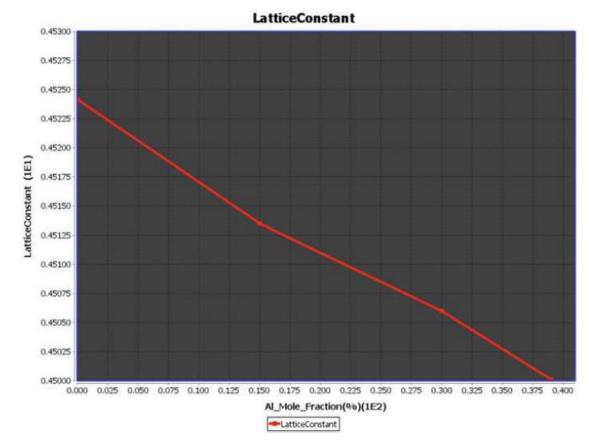


Fig. 2 Variation of lattice constant with Al mole fraction

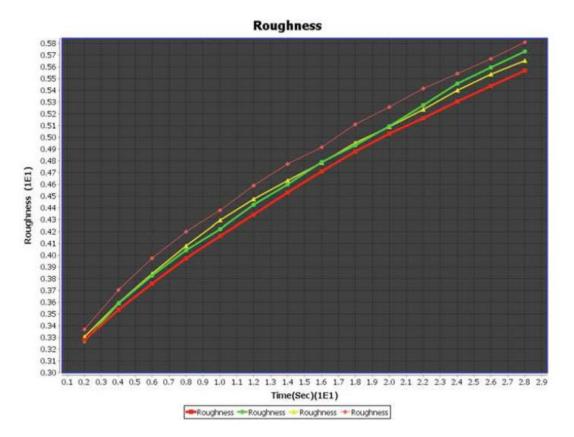


Fig. 3 Surface roughness at the interface of AlGaN/GaN